By Topic

Video Streaming Over Wireless Packet Networks: An Occupancy-Based Rate Adaptation Perspective

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hassan, M. ; American Univ. of Sharjah, Sharjah ; Krunz, M.

The perceived video quality in a wireless streaming application strongly depends on the channel's dynamics and the fluctuations of the source bit rate. In this paper, we introduce two channel-adaptive rate control schemes for slowly and fast varying channels, respectively. Both schemes account for the playback buffer occupancy in the joint optimization of the source rate and channel-code forward error correction parameters. For the first scheme, we assume that the channel state does not change during the transmission of a video frame. We optimize the channel-code parameters and maximize the per-frame source rate subject to satisfying a constraint on the probability of delivering the next video frame within a buffer-occupancy-dependent critical time (Tc). For the second scheme, we allow the channel state to change within the frame delivery period, and we compute the optimal system parameters and maximize the source rate while satisfying a constraint on the mean frame delivery time. Our schemes aim at maintaining the occupancy of the playback buffer around a predefined threshold value, hence ensuring continuous video playback. Simulation and numerical investigations are carried out to study the interactions among various key parameters and verify the adequacy of the analysis.

Published in:

Circuits and Systems for Video Technology, IEEE Transactions on  (Volume:17 ,  Issue: 8 )