By Topic

State-of-the-Art Performance in Text-Independent Speaker Verification Through Open-Source Software

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

This paper illustrates an evolution in state-of-the-art speaker verification by highlighting the contribution from newly developed techniques. Starting from a baseline system based on Gaussian mixture models that reached state-of-the-art performances during the NIST'04 SRE, final systems with new intersession compensation techniques show a relative gain of around 50%. This work highlights that a key element in recent improvements is still the classical maximum a posteriori (MAP) adaptation, while the latest compensation methods have a crucial impact on overall performances. Nuisance attribute projection (NAP) and factor analysis (FA) are examined and shown to provide significant improvements. For FA, a new symmetrical scoring (SFA) approach is proposed. We also show further improvement with an original combination between a support vector machine and SFA. This work is undertaken through the open-source ALIZE toolkit.

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:15 ,  Issue: 7 )