By Topic

Upper-Limb Powered Exoskeleton Design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Perry, J.C. ; Washington Univ., Seattle ; Rosen, J. ; Burns, S.

An exoskeleton is an external structural mechanism with joints and links corresponding to those of the human body. With applications in rehabilitation medicine and virtual reality simulation, exoskeletons offer benefits for both disabled and healthy populations. A pilot database defining the kinematics and dynamics of the upper limb during daily living activities was one among several factors guiding the development of an anthropomorphic, 7-DOF, powered arm exoskeleton. Additional design inputs include anatomical and physiological considerations, workspace analyses, and upper limb joint ranges of motion. The database was compiled from 19 arm activities of daily living. The cable-actuated dexterous exoskeleton for neurorehabilitation (CADEN)-7 offers remarkable opportunities as a versatile human-machine interface and as a new generation of assistive technology. Proximal placement of motors and distal placement of cable-pulley reductions were incorporated into the design, leading to low inertia, high-stiffness links, and backdrivable transmissions with zero backlash. The design enables full glenohumeral, elbow, and wrist joint functionality. Potential applications of the exoskeleton as a wearable robot include: 1) a therapeutic and diagnostics device for physiotherapy, 2) an assistive (orthotic) device for human power amplifications, 3) a haptic device in virtual reality simulation, and 4) a master device for teleoperation.

Published in:

Mechatronics, IEEE/ASME Transactions on  (Volume:12 ,  Issue: 4 )