By Topic

Can RF Help CMOS Processors? [Topics in Circuits for Communications]

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Eran Socher ; Univ. of California, Los Angeles ; Mau-Chung Frank Chang

Digital circuits implemented in CMOS technology have been the workhorses of high performance computer processors for more than a decade, following Moore's law with exponentially increasing integration and performance. Driven by lower cost, increasing performance, and mixed-signal benefits, CMOS technology also has found increasing use in analog, and more recently, RF applications. Now, with transistor performance still improving, wires are becoming the limiting factor for speed and performance by imposing limits on communication bandwidth and latency between processing cores and memories, both off- and on-chip. Communication and circuit techniques, developed mainly for narrow band-wireless RF communication can help increase the wired communication speed in digital systems. This approach, dubbed RF Interconnect (RF-I), picks up speed for on-board and on-chip applications, changing the communication paradigm from the old parallel unidirectional time-shared bus to new transmission lines enabling reconfigurable communication using both frequency and code division multiple access techniques.

Published in:

IEEE Communications Magazine  (Volume:45 ,  Issue: 8 )