By Topic

BER Performance of Free-Space Optical Transmission with Spatial Diversity

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Navidpour, S.M. ; Pennsylvania Slate Univ, University Park ; Uysal, M. ; Kavehrad, Mohsen

Free space optical (FSO) communications is a cost-effective and high bandwidth access technique, which has been receiving growing attention with recent commercialization successes. A major impairment in FSO links is the turbulence- induced fading which severely degrades the link performance. To mitigate turbulence-induced fading and, therefore, to improve the error rate performance, spatial diversity can be used over FSO links which involves the deployment of multiple laser transmitters/receivers. In this paper, we investigate the bit error rate (BER) performance of FSO links with spatial diversity over log- normal atmospheric turbulence fading channels, assuming both independent and correlated channels among transmitter/receiver apertures. Our analytical derivations build upon an approximation to the sum of correlated log-normal random variables. The derived BER expressions quantify the effect of spatial diversity and possible spatial correlations in a log-normal channel.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:6 ,  Issue: 8 )