Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Serially-Concatenated Low-Density Generator Matrix (SCLDGM) Codes for Transmission Over AWGN and Rayleigh Fading Channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
4 Author(s)

Low density generator matrix (LDGM) codes are a particular class of low density parity check (LDPC) codes with very low encoding complexity. Single LDGM codes present high error-floors, which can be substantially reduced with the serial concatenation of two LDGM (SCLDGM) codes. We propose a technique to obtain good SCLDGM codes using extrinsic information transfer (EXIT) functions in a novel way. Although the optimization is performed for AWGN channels with binary signaling, the resulting codes are also optimal for AWGN and perfectly-interleaved Rayleigh fading channels with non-binary signaling and perfect CSI at reception, provided that Gray mapping is utilized. Optimized regular and irregular SCLDGM codes outperform heuristically-designed LDGM codes existing in the literature, and have a performance similar to or better than that of irregular repeat accumulate (IRA) codes.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:6 ,  Issue: 8 )