Cart (Loading....) | Create Account
Close category search window
 

Performance Analysis of Adaptively-Routed Wormhole-Switched Networks with Finite Buffers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

The use of adaptively-routed wormhole switched k-ary n-cubes has been motivated by the high path diversity provided by the rich topology of this family of interconnection networks. Due to its insensitivity to message destination, adaptive wormhole switching has been an attractive design alternative not only in networks suggested for contemporary multicomputers but also in the new Network-on-Chip and System-on-Chip architectures. Although analytical performance models for wormhole switched networks have been widely reported in the literature over the past two decades, the majority of these models have unrealistically assumed negligible buffering capacity at each switching element of the network. This paper proposes the first analytical model to assess the performance of adaptively-routed wormhole-switched k-ary n-cubes with finite size buffers. The new model can also accounts for the use of any number of virtual channels in order to further improve system performance. The model is validated by means of an event-driven simulator and experiments show close agreement between model predictions and simulator results.

Published in:

Communications, 2007. ICC '07. IEEE International Conference on

Date of Conference:

24-28 June 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.