By Topic

A Generalised Mixed Norm Stochastic Gradient Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
C. Boukis ; Autonomic and Grid Computing Group, Athens Information Technology, Markopoulo Ave, Peania/Athens 19002, Greece ; D. P. Mandic ; A. G. Constantinides

A novel stochastic gradient algorithm for finite impulse response (FIR) adaptive filters, termed the least sum of exponentials (LSE), is introduced. In order to provide a generalisation of the class of weighted mixed norm algorithms and at the same time avoid problems associated with a large number of free paramaters of such algorithms, LSE is derived by minimising a sum of error exponentials. A rigourous mathematical analysis is provided, resulting in closed form expressions for the optimal weights and the upper bound of the learning rate. The analysis is supported by simulations in a system identification setting.

Published in:

2007 15th International Conference on Digital Signal Processing

Date of Conference:

1-4 July 2007