By Topic

How to Apply ICA on Actual Data ? Example of Mars Hyperspectral Image Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jutten, C. ; GIPSA-lab., Grenoble ; Moussaoui, S. ; Schmidt, F.

As any estimation method, results provided by ICA are dependent of a model - usually a linear mixture and separation model - and of a criterion - usually independence. In many actual problems, the model is a coarse approximation of the system physics and independence can be more or less satisfied, and consequently results are not reliable. Moreover, with many actual data, there is a lack of reliable knowledge on the sources to be extracted, and the interpretation of the independent components (IC) must be done very carefully, using partial prior information and with interactive discussions with experts. In this talk, we explain how such a scientific method can take place on the example of analysis of Mars hyperspectral images.

Published in:

Digital Signal Processing, 2007 15th International Conference on

Date of Conference:

1-4 July 2007