By Topic

Adaptive Fragmentation for Latency Control and Energy Management in Wireless Real-time Environments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Rajan, D. ; Univ. of Notre Dame, Notre Dame ; Poellabauer, C.

Wireless environments are typically characterized by unpredictable and unreliable channel conditions. In such environments, fragmentation of network-bound data is a commonly adapted technique to improve the probability of successful data transmissions and reduce the energy overheads incurred due to re-transmissions. The overall latencies involved with fragmentation and consequent re-assembly of fragments are often neglected which bear significant effects on the real-time guarantees of the participating applications. This work studies the latencies introduced as a result of the fragmentation performed at the link layer (MAC layer in IEEE 802.11) of the source device and their effects on end-to-end delay constraints of mobile applications (e.g., media streaming). Based on the observed effects, this work proposes a feedback-based adaptive approach that chooses an optimal fragment size to (a) satisfy end-to-end delay requirements of the distributed application and (b) minimize the energy consumption of the source device by increasing the probability of successful transmissions, thereby reducing re-transmissions and their associated costs.

Published in:

Wireless Algorithms, Systems and Applications, 2007. WASA 2007. International Conference on

Date of Conference:

1-3 Aug. 2007