By Topic

Adaptive Object Tracking Based on an Effective Appearance Filter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hanzi Wang ; Johns Hopkins Univ., Baltimore ; Suter, D. ; Schindler, K. ; Chunhua Shen

We propose a similarity measure based on a spatial-color mixture of Gaussians (SMOG) appearance model for particle filters. This improves on the popular similarity measure based on color histograms because it considers not only the colors in a region but also the spatial layout of the colors. Hence, the SMOG-based similarity measure is more discriminative. To efficiently compute the parameters for SMOG, we propose a new technique with which the computational time is greatly reduced. We also extend our method by integrating multiple cues to increase the reliability and robustness. Experiments show that our method can successfully track objects in many difficult situations.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:29 ,  Issue: 9 )