By Topic

User Assisted Separation of Reflections from a Single Image Using a Sparsity Prior

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Levin, A. ; Hebrew Univ. of Jerusalem, Jerusalem ; Weiss, Y.

When we take a picture through transparent glass, the image we obtain is often a linear superposition of two images: The image of the scene beyond the glass plus the image of the scene reflected by the glass. Decomposing the single input image into two images is a massively ill-posed problem: In the absence of additional knowledge about the scene being viewed, there are an infinite number of valid decompositions. In this paper, we focus on an easier problem: user assisted separation in which the user interactively labels a small number of gradients as belonging to one of the layers. Even given labels on part of the gradients, the problem is still ill-posed and additional prior knowledge is needed. Following recent results on the statistics of natural images, we use a sparsity prior over derivative filters. This sparsity prior is optimized using the iterative reweighted least squares (IRLS) approach. Our results show that using a prior derived from the statistics of natural images gives a far superior performance compared to a Gaussian prior and it enables good separations from a modest number of labeled gradients.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:29 ,  Issue: 9 )