Cart (Loading....) | Create Account
Close category search window
 

Localization of Shapes Using Statistical Models and Stochastic Optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Destrempes, F. ; Univ. de Montreal, Montreal ; Mignotte, M. ; Angers, J.-F.

In this paper, we present a new model for deformations of shapes. A pseudolikelihood is based on the statistical distribution of the gradient vector field of the gray level. The prior distribution is based on the probabilistic principal component analysis (PPCA). We also propose a new model based on mixtures of PPCA that is useful in the case of greater variability in the shape. A criterion of global or local object specificity based on a preliminary color segmentation of the image is included into the model. The localization of a shape in an image is then viewed as minimizing the corresponding Gibbs field. We use the exploration/selection (E/S) stochastic algorithm in order to find the optimal deformation. This yields a new unsupervised statistical method for localization of shapes. In order to estimate the statistical parameters for the gradient vector field of the gray level, we use an iterative conditional estimation (ICE) procedure. The color segmentation of the image can be computed with an exploration/selection/estimation (ESE) procedure.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:29 ,  Issue: 9 )

Date of Publication:

Sept. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.