By Topic

Fast Polygonal Approximation of Digital Curves Using Relaxed Straightness Properties

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Partha Bhowmick ; Bengal Eng. & Sci. Univ., Howrah ; Bhargab B. Bhattacharya

Several existing digital straight line segment (DSS) recognition algorithms can be used to determine the digital straightness of a given one-pixel-thick digital curve. Because of the inherent geometric constraints of digital straightness, these algorithms often produce a large number of segments to cover a given digital curve representing a real-life object/image. Thus, a curve segment, which is not exactly digitally straight but appears to be visually straight, is fragmented into multiple DSS when these algorithms are run. In this paper, a new concept of approximate straightness is introduced by relaxing certain conditions of DSS, and an algorithm is described to extract those segments from a digital curve. The number of such segments required to cover the curve is found to be significantly fewer than that of the exact DSS cover. As a result, the data set required for representing a curve also reduces to a large extent. The extracted set of segments can further be combined to determine a compact polygonal approximation of a digital curve based on certain approximation criteria and a specified error tolerance. The proposed algorithm involves only primitive integer operations and, thus, runs very fast compared to those based on exact DSS. The overall time complexity becomes linear in the number of points present in the representative set. Experimental results on several digital curves demonstrate the speed, elegance, and efficacy of the proposed method.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:29 ,  Issue: 9 )