By Topic

Cardinal Interpolation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gustafson, S.C. ; Air Force Inst. of Technol., Wright-Patterson Air Force Base ; Parker, D.R. ; Martin, R.K.

A Bayesian probability density for an interpolating function is developed, and its desirable properties and practical potential are demonstrated. This density has an often needed but previously unachieved property, here called cardinal interpolation, which ensures extrapolation to the density of the least-squares linear model. In particular, the mean of the cardinal interpolation density is a smooth function that intersects given (x, y) points and which extrapolates to their least-squares line, and the variance of this density is a smooth function that is zero at the point x values, that increases with distance from the nearest point x value, and that extrapolates to the well-known quadratic variance function for the least-squares line. The new cardinal interpolation density is developed for Gaussian radial basis interpolators using fully Bayesian methods that optimize interpolator smoothness. This optimization determines the basis function widths and yields an interpolating density that is non-Gaussian except for large magnitude x and which is therefore not the outcome of a Gaussian process. Further, new development shows that the salient property of extrapolation to the density of the least- squares linear model can be achieved for more general approximating (not just interpolating) functions.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:29 ,  Issue: 9 )