By Topic

On the Optimal Robot Routing Problem in Wireless Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bo Yuan ; Univ. of Queensland, Queensland ; Orlowska, M. ; Sadiq, S.

Given a set of sparsely distributed sensors in the Euclidean plane, a mobile robot is required to visit all sensors to download the data and finally return to its base. The effective range of each sensor is specified by a disk, and the robot must at least reach the boundary to start communication. The primary goal of optimization in this scenario is to minimize the traveling distance by the robot. This problem can be regarded as a special case of the traveling salesman problem with neighborhoods (TSPN), which is known to be NP-hard. In this paper, we present a novel TSPN algorithm for this class of TSPN, which can yield significantly improved results compared to the latest approximation algorithm.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:19 ,  Issue: 9 )