Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Hybrid Runtime Management of Space-Time Heterogeneity for Parallel Structured Adaptive Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xiaolin Li ; Oklahoma State Univ., Stillwater ; Parashar, M.

Structured adaptive mesh refinement (SAMR) techniques provide an effective means for dynamically concentrating computational effort and resources to appropriate regions in the application domain. However, due to their dynamism and space-time heterogeneity, scalable parallel implementation of SAMR applications remains a challenge. This paper investigates hybrid runtime management strategies and presents an adaptive hierarchical multipartitioner (AHMP) framework. AHMP dynamically applies multiple partitioners to different regions of the domain, in a hierarchical manner, to match the local requirements of the regions. Key components of the AHMP framework include a segmentation-based clustering algorithm (SBC) that can efficiently identify regions in the domain with relatively homogeneous partitioning requirements, mechanisms for characterizing the partitioning requirements of these regions, and a runtime system for selecting, configuring, and applying the most appropriate partitioner to each region. Further, to address dynamic resource situations for long-running applications, AHMP provides a hybrid partitioning strategy (HPS) that involves application-level pipelining, trading space for time when resources are sufficiently large and underutilized, and an application-level out-of-core strategy (ALOC), trading time for space when resources are scarce in order to enhance the survivability of applications. The AHMP framework has been implemented and experimentally evaluated on up to 1,280 processors of the IBM SP4 cluster at the San Diego Supercomputer Center.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:18 ,  Issue: 9 )