By Topic

A Fine-Grained Reputation System for Reliable Service Selection in Peer-to-Peer Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yanchao Zhang ; New Jersey Inst. of Technol., Newark ; Yuguang Fang

Distributed peer-to-peer (P2P) applications have been gaining momentum recently. In such applications, all participants are equal peers simultaneously functioning as both clients and servers to each other. A fundamental problem is, therefore, how to select reliable servers from a vast candidate pool. To answer this important open question, we present a novel reputation system built upon the multivariate Bayesian inference theory. Our system offers a theoretically sound basis for clients to predict the reliability of candidate servers based on self-experiences and feedbacks from peers. In our system, a fine-grained quality of service (QoS) differentiation method is designed to satisfy the diverse QoS needs of individual nodes. Our reputation system is also application-independent and can simultaneously serve unlimited P2P applications of different type. Moreover, it is semidistributed in the sense that all application-related QoS information is stored across system users either in a random fashion or through a distributed hash table (DHT). In addition, we propose to leverage credits and social awareness as reliable means of seeking honest feedbacks. Furthermore, our reputation system well protects the privacy of users offering feedbacks and is secure against various attacks such as defaming, flattering, and the Sybil attack. We confirm the effectiveness and efficiency of the proposed system by extensive simulation results.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:18 ,  Issue: 8 )