By Topic

Conversion Function Clustering and Selection Using Linguistic and Spectral Information for Emotional Voice Conversion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chi-Chun Hsia ; Nat. Cheng Kung Univ., Tainan ; Chung-Hsien Wu ; Jian-Qi Wu

In emotional speech synthesis, a large speech database is required for high-quality speech output. Voice conversion needs only a compact-sized speech database for each emotion. This study designs and accumulates a set of phonetically balanced small- sized emotional parallel speech databases to construct conversion functions. The Gaussian mixture bigram model (GMBM) is adopted as the conversion function to characterize the temporal and spectral evolution of the speech signal. The conversion function is initially constructed for each instance of parallel subsyllable pairs in the collected speech database. To reduce the total number of conversion functions and select an appropriate conversion function, this study presents a framework by incorporating linguistic and spectral information for conversion function clustering and selection. Subjective and objective evaluations with statistical hypothesis testing are conducted to evaluate the quality of the converted speech. The proposed method compares favorably with previous methods in conversion-based emotional speech synthesis.

Published in:

Computers, IEEE Transactions on  (Volume:56 ,  Issue: 9 )