By Topic

Multicategory Classification Using An Extreme Learning Machine for Microarray Gene Expression Cancer Diagnosis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

In this paper, the recently developed Extreme Learning Machine (ELM) is used for directing multicategory classification problems in the cancer diagnosis area. ELM avoids problems like local minima, improper learning rate and overfitting commonly faced by iterative learning methods and completes the training very fast. We have evaluated the multicategory classification performance of ELM on three benchmark microarray data sets for cancer diagnosis, namely, the GCM data set, the Lung data set, and the Lymphoma data set. The results indicate that ELM produces comparable or better classification accuracies with reduced training time and implementation complexity compared to artificial neural networks methods like conventional back-propagation ANN, Linder's SANN, and Support Vector Machine methods like SVM-OVO and Ramaswamy's SVM-OVA. ELM also achieves better accuracies for classification of individual categories.

Published in:

IEEE/ACM Transactions on Computational Biology and Bioinformatics  (Volume:4 ,  Issue: 3 )