By Topic

Bidirectional Long Short-Term Memory Networks for Predicting the Subcellular Localization of Eukaryotic Proteins

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Thireou, T. ; Found. for Res. & Technol.-Hellas, Crete ; Reczko, M.

An algorithm called bidirectional long short-term memory networks (BLSTM) for processing sequential data is introduced. This supervised learning method trains a special recurrent neural network to use very long-range symmetric sequence context using a combination of nonlinear processing elements and linear feedback loops for storing long-range context. The algorithm is applied to the sequence-based prediction of protein localization and predicts 93.3 percent novel nonplant proteins and 88.4 percent novel plant proteins correctly, which is an improvement over feedforward and standard recurrent networks solving the same problem. The BLSTM system is available as a Web service at http://stepc.stepc.gr/-synaptic/blstm.html.

Published in:

Computational Biology and Bioinformatics, IEEE/ACM Transactions on  (Volume:4 ,  Issue: 3 )