By Topic

Low-Power High-Performance and Dynamically Configured Multi-Port Cache Memory Architecture

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bajwa, H. ; City Univ. of New York, New York ; Chen, X.

As on-chip cache size has increased considerably in recent high-performance microprocessor technologies, power dissipation and leakage current in SRAM have become critical. High-performance IC designs use multi-port cache memory to provide the needed accessibility and bandwidth. Since the word and bit lines cover the foot-print of the entire cache section, duplicating the word and bit lines for multiple ports results in large silicon area and increases bitline discharge and power dissipation. As technology scales down device size and supply voltages, static power dissipation has emerged as a critical factor in total system power dissipation. In this paper, we present an area-and energy-efficient multi-port cache memory architecture, which employs isolation nodes, local sense amplifiers and dynamic memory partitioning techniques, to facilitate simultaneous multi-port accesses without duplicating bitlines. The proposed cache memory architecture also reduces bitline latency.

Published in:

Electrical Engineering, 2007. ICEE '07. International Conference on

Date of Conference:

11-12 April 2007