By Topic

COMET: A Collaborative Tutoring System for Medical Problem-Based Learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Siriwan Suebnukarn ; Thammasat University Dental School ; Peter Haddawy

This paper discussed about the developed collaborative intelligent tutoring system for medical PBL called Comet (collaborative medical tutor). Comet uses Bayesian networks to model the knowledge and activity of individual students as well as small groups. It applies generic tutoring algorithms to these models and generates tutorial hints that guide problem solving. An early laboratory study shows a high degree of agreement between the hints generated by Comet and those of experienced human tutors. Evaluations of Comet's clinical-reasoning model and the group reasoning path provide encouraging support for the general framework.

Published in:

IEEE Intelligent Systems  (Volume:22 ,  Issue: 4 )