By Topic

Fourier Decomposition Analysis of Anisotropic Inhomogeneous Dielectric Waveguide Structures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Pashaie, R. ; Univ. of Pennsylvania, Philadelphia

In this paper, we extend the Fourier decomposition method to compute both propagation constants and the corresponding electromagnetic field distributions of guided waves in millimeter-wave and integrated optical structures. Our approach is based on field Fourier expansions of a pair of wave equations, which have been derived to handle inhomogeneous mediums with diagonalized permittivity and permeability tensors. The tensors are represented either by a grid of homogeneous rectangles or by distribution functions defined over rectangular domains. Using the Fourier expansion, partial differential equations are converted to a matrix eigenvalue problem that correctly models this class of dielectric structures. Finally, numerical results are presented for various channel waveguides and are compared with those of other literature to validate the formulation.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:55 ,  Issue: 8 )