By Topic

Stable Flocking of Multiple Inertial Agents on Balanced Graphs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Dongjun Lee ; Univ. of Tennessee, Knoxville ; Spong, M.W.

In this note, we consider the flocking of multiple agents which have significant inertias and evolve on a balanced information graph. Here, by flocking, we mean that all the agents move with a common velocity while keeping a certain desired internal group shape. We first show that flocking algorithms that neglect agents' inertial effect can cause unstable group behavior. To incorporate this inertial effect, we use the passive decomposition, which decomposes the closed-loop group dynamics into two decoupled systems: a shape system representing the internal group shape and a locked system describing the motion of the center-of-mass. Then, analyzing the locked and shape systems separately with the help of graph theory, we propose a provably stable flocking control law, which ensures that the internal group shape is exponentially stabilized to a desired one, while all the agents' velocities converge to the centroid velocity that is also shown to be time-invariant. This result still holds for slow-switching balanced information graphs. Simulation is performed to validate the theory.

Published in:

Automatic Control, IEEE Transactions on  (Volume:52 ,  Issue: 8 )