By Topic

Passivity as a Design Tool for Group Coordination

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Arcak, M. ; Rensselaer Polytech Inst., Troy

We pursue a group coordination problem where the objective is to steer the differences between output variables of the group members to a prescribed compact set. To stabilize this set we study a class of feedback rules that are implementable with local information available to each member. When the information flow between neighboring members is bidirectional, we show that the closed-loop system exhibits a special interconnection structure which inherits the passivity properties of its components. By exploiting this structure we develop a passivity-based design framework, which results in a broad class of feedback rules that encompass as special cases some of the existing formation stabilization and group agreement designs in the literature. The passivity approach offers additional design flexibility compared to these special cases, and systematically constructs a Lurie-type Lyapunov function for the closed-loop system. We further study the robustness of these feedback laws in the presence of a time-varying communication topology, and present a persistency of excitation condition which allows the interconnection graph to lose connectivity pointwise in time as long as it is established in an integral sense.

Published in:

Automatic Control, IEEE Transactions on  (Volume:52 ,  Issue: 8 )