Cart (Loading....) | Create Account
Close category search window
 

Shockwave Acceleration and Attenuation in Glow Discharge Argon Plasma

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Experimental investigations of the shockwave propagation in the direction parallel to the electric field in low-pressure longitudinal glow discharge argon plasmas are performed by the simultaneous multipoint laser deflection technique. In the newly developed shock tube at Troy University, Mach 1.5-2.2 shockwaves are produced by a fast capacitor discharge (quarter period tau1/4 = 1.4 mus ). In this paper, the shock propagation measurements are extended to the low pressure limit down to 3.6 torr while confirming the earlier measurements performed at gas pressures 15 torr and above. The shockwaves are launched through a plasma medium inside the shock tube, where the deflections of the laser beams are recorded on a fast oscilloscope. An average shockwave velocity in the plasma is determined from the time history of the laser deflection signals. The shockwave speed and the broadening of the laser deflection signals in the plasma are found to be dependent on the plasma discharge current. Shockwave speeds increase by 18% for the plasma at 3.6 torr over a range of plasma discharge current I = 0-150 mA and by 46% for the plasma at 15 torr over I = 7-150 mA. In addition, shockwave amplitudes are attenuated in the plasma and show linear dependence on the shockwave speed or Mach number.

Published in:

Plasma Science, IEEE Transactions on  (Volume:35 ,  Issue: 4 )

Date of Publication:

Aug. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.