By Topic

Filaments in the Sheath Evolution of the Dense Plasma Focus as Applied to Intense Auroral Observations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
MarÍa Magdalena Milanese ; Univ. Nacional del Centro de la Provincia de Buenos Aires, Tandil ; Jorge J. Niedbalski ; Roberto Luis Moroso

This paper investigates the dense plasma focus (DPF) for applications in space-plasma physics. The plasma focus (a variant of Z-pinch) generates plasmas from fast high-voltage electrical discharges on coaxial electrodes suitable for very different studies: from fusion up to plasma-space modeling. In particular, the plasma sheath of the DPF is studied here and measured in some detail as a possible model for auroral observations. Deuterium gas was used in the experiments, and many helpful techniques were used, such as ultrafast photograph and neutron detection from nuclear-fusion reactions. In this paper, we show the different phases of the plasma focus correlated with discharge-current characteristics and neutron and X-ray production. Filamentary formations in the current sheath are shown, and its correlation with neutron production is done. The same number of filaments (about 60) reported in auroral observations are detected in plasma-focus discharges.

Published in:

IEEE Transactions on Plasma Science  (Volume:35 ,  Issue: 4 )