Cart (Loading....) | Create Account
Close category search window

Experimental Investigation of an Improved MILO

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Yu-Wei Fan ; Nat. Univ. of Defense Technol., Changsha ; Cheng-Wei Yuan ; Hui-Huang Zhong ; Ting Shu
more authors

The magnetically insulated line oscillator (MILO) is an attractive high-power microwave source. It is a compact lightweight gigawatt-class coaxial crossed field device that needs no externally applied magnetic field to insulate electron flow in a slow-wave structure. An improved MILO model has been presented by Fan, Yuan and Zhong. A novel beam dump, a one-cavity RF choke section, and a novel mode-transducing antenna are introduced into the improved MILO. In simulation, high-power microwave of TEM mode is generated with peak power of 4.2 GW, frequency of 1.76 GHz, and peak power conversion efficiency of 12% when the voltage is 600 kV and the current is 52 kA. The TEM mode from the extractor gap is converted into a coaxial TE11 mode and radiated directly by the mode-transducing antenna. The direction of the radiated microwave agrees with the axis of the MILO. The antenna gain is 17.6 dBi at 1.76 GHz in simulation. The experiments have been carried out on the improved MILO device, which had been fabricated in accordance with the optimized configuration. The detailed experimental results are discussed in this paper. The improved MILO is driven by a self-built 600-kV, 10-Omega, 50-ns pulser: SPARK-04, a capacitor- and transformer-driven coaxial-water-line machine in our laboratory. The radiated microwave was detected with crystal detectors in the far-field region. The improved MILO has been extensively investigated by experiments. In the experiments, the measured microwave frequency ranges from 1.74 to 1.78 GHz, with a peak power level of above 2.4 GW, when the diode voltage is 550 kV and the current is 57 kA. The pulse duration (full-width at half-maximum) of the radiated microwave is 22 ns. The cold test and hot test results of the mode-transducing antenna are in good agreement with the simulational results. The mode of the radiated microwave is TE11 mode, and the direction of the radiated microwave overlaps with the axis of the MILO device. The - antenna gain is about 17.4 dBi at 1.76 GHz. The 3-dB beam widths are 21.2deg in E-plane and 26.3deg in H-plane, respectively. No obvious breakdown appeared in the region of the mode-transducing antenna and the region of the interface of the vacuum-air in the experiments. The experimental results confirm the ones predicted by simulation.

Published in:

Plasma Science, IEEE Transactions on  (Volume:35 ,  Issue: 4 )

Date of Publication:

Aug. 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.