By Topic

Evolution of a Negative-Rule Fuzzy Obstacle Avoidance Controller for an Autonomous Vehicle

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
John H. Lilly ; Univ. of Louisville, Louisville

A fuzzy obstacle avoidance controller is designed for an autonomous vehicle. The controller is given the capability for obstacle avoidance by using negative fuzzy rules in conjunction with traditional positive ones. Negative fuzzy rules prescribe actions to be avoided rather than performed. A rule base of positive rules is specified by an expert for directing the vehicle to the target in the absence of obstacles, while a rule base of negative rules is experimentally determined from expert operation of the vehicle in the presence of obstacles. The consequents of the negative-rule system are codified into a chromosome, and this chromosome is evolved using an evolutionary algorithm. The resulting fuzzy system has far fewer rules than would be necessary for an obstacle avoidance controller using purely positive rules, while in addition retaining greater interpretability.

Published in:

IEEE Transactions on Fuzzy Systems  (Volume:15 ,  Issue: 4 )