By Topic

Scattering by Conducting Bodies Coated With Bi-Isotropic Materials

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Dao-Xiang Wang ; City Univ. of Hong Kong, Hong Kong ; Pui Yi Lau ; Edward Kai-Ning Yung ; Ru-Shan Chen

Electromagnetic scattering by arbitrarily shaped conducting bodies coated with general bi-isotropic materials is formulated in terms of the surface integral equation method. In order to facilitate the implementation of the surface equivalence principle, a field decomposition scheme is utilized to split a bi-isotropic media into two equivalent isotropic media. By enforcing the boundary condition on the interfaces of the body, a set of coupled integral equations is finally obtained for the unknown surface currents and then numerically solved using the moment methods combined with the vector triangular basis function. The fast multipole technique has been embedded into the algorithm to accelerate the solution process. The validity of theoretical formulations is verified by numerical results and their comparisons. The calculated results for bi-isotropically coated conducting spheres and oblate spheroids are compared with the exact solution and the existing data, and excellent agreements are observed.

Published in:

IEEE Transactions on Antennas and Propagation  (Volume:55 ,  Issue: 8 )