By Topic

Modeling and Design of Electronically Tunable Reflectarrays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hum, S.V. ; Univ. of Toronto, Toronto ; Okoniewski, M. ; Davies, R.J.

The reflectarray has significant promise in applications requiring high-gain, low-profile reflectors. Recent advances in tuning technology have raised the possibility of realizing electronically tunable reflectarrays, which can dynamically adjust their radiation patterns. This paper presents an electronically tunable reflectarray based on elements tuned using varactor diodes. Modeling approaches based on an equivalent circuit representation and computational electromagnetics simulations are presented. Both techniques accurately predict the scattering characteristics of the unit cell as compared to experimental measurements. The development of a unit cell with over 320omicron of phase agility at 5.5 GHz is discussed. Finally, a 70-element electronically tunable reflectarray prototype operating at 5.8 GHz is presented. Radiation pattern measurements with the reflectarray demonstrate its dynamic beam-forming characteristics. Measurements of the gain of the reflectarray correlate well with theoretical expectations.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:55 ,  Issue: 8 )