By Topic

Synthetic Environments for Simulated Missions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Robert Gaskell ; California Inst. of Technol., Pasadena ; Laura Ekroot Husman ; James B. Collier ; Richard L. Chen

Synthetic environments offer Space Flight projects an opportunity to perform rapid, comprehensive, and rigorous modeling of the critical elements of a mission in order to compute quantitative measures of design performance, associated risk, and actual mission utility value. Significantly, these studies can be performed early in the mission cycle. These synthetic terrains are generated on parallel, high-performance computers and served to remote simulations at near-interactive speeds. The terrain creation uses a realistic sequence of physical phenomena such as cratering and dusting with parametric control of features such as surface roughness and rock density. Terrain resolution may be arbitrary but typically ranges from 0.01 to 10 meters. The terrain server has been used for two rover simulations, one using the actual Sojourner autonomy flight code, and the other a more general algorithm. Monte Carlo studies of rover designs interacting with synthetic environments were executed in parallel to quickly compute performance statistics and risk estimates.

Published in:

IEEE Aerospace and Electronic Systems Magazine  (Volume:22 ,  Issue: 7 )