By Topic

Coherence Multiplexing of Distributed Sensors Based on Pairs of Fiber Bragg Gratings of Low Reflectivity

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Guan, Z.-G. ; Zhejiang Univ., Hangzhou ; Chen, D. ; Sailing He

A coherence multiplexing scheme for distributed sensors based on fiber Bragg grating (FBG) pairs is introduced. Each pair of identical FBGs forms a Fabry-Perot (FP) interferometer (FPI) and induces an additional optical path difference (OPD) that is proportional to the center-to-center interval between the two FBGs (one for sensing and the other for reference). The interference intensity reaches its maximum when the FPI-induced OPD is compensated by scanning one arm of a Michelson interferometer to a certain position. The variation of the measurand induces a mismatch between the central reflection wavelengths of two FBGs and consequently reduces interference intensity. To separate the interferometric signals for demultiplexing, the intervals between the two FBGs are preset to different values for different sensors. In order to improve the multiplexing ability of the system and reduce the crosstalk among the sensors, we use gratings of low reflectivity. Temperature sensing is demonstrated to show the high sensitivity (-1.92%/degC) and low crosstalk of our distributed sensing system.

Published in:

Lightwave Technology, Journal of  (Volume:25 ,  Issue: 8 )