Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Closing the Loop With Graphical SLAM

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Folkesson, J. ; Massachusetts Inst. of Technol., Cambridge ; Christensen, H.I.

The problem of simultaneous localization and mapping (SLAM) is addressed using a graphical method. The main contributions are a computational complexity that scales well with the size of the environment, the elimination of most of the linearization inaccuracies, and a more flexible and robust data association. We also present a detection criteria for closing loops. We show how multiple topological constraints can be imposed on the graphical solution by a process of coarse fitting followed by fine tuning. The coarse fitting is performed using an approximate system. This approximate system can be shown to possess all the local symmetries. Observations made during the SLAM process often contain symmetries, that is to say, directions of change to the state space that do not affect the observed quantities. It is important that these directions do not shift as we approximate the system by, for example, linearization. The approximate system is both linear and block diagonal. This makes it a very simple system to work with especially when imposing global topological constraints on the solution. These global constraints are nonlinear. We show how these constraints can be discovered automatically. We develop a method of testing multiple hypotheses for data matching using the graph. This method is derived from statistical theory and only requires simple counting of observations. The central insight is to examine the probability of not observing the same features on a return to a region. We present results with data from an outdoor scenario using a SICK laser scanner.

Published in:

Robotics, IEEE Transactions on  (Volume:23 ,  Issue: 4 )