Cart (Loading....) | Create Account
Close category search window
 

State-of-Charge Determination From EMF Voltage Estimation: Using Impedance, Terminal Voltage, and Current for Lead-Acid and Lithium-Ion Batteries

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Coleman, M. ; Nat. Univ. of Ireland, Galway ; Chi Kwan Lee ; Chunbo Zhu ; Hurley, W.G.

State-of-charge (SOC) determination is an increasingly important issue in battery technology. In addition to the immediate display of the remaining battery capacity to the user, precise knowledge of SOC exerts additional control over the charging/discharging process, which can be employed to increase battery life. This reduces the risk of overvoltage and gassing, which degrade the chemical composition of the electrolyte and plates. The proposed model in this paper determines the SOC by incorporating the changes occurring due to terminal voltage, current load, and internal resistance, which mitigate the disadvantages of using impedance only. Electromotive force (EMF) voltage is predicted while the battery is under load conditions; from the estimated EMF voltage, the SOC is then determined. The method divides the battery voltage curve into two regions: 1) the linear region for full to partial SOC and 2) the hyperbolic region from partial to low SOC. Algorithms are developed to correspond to the different characteristic changes occurring within each region. In the hyperbolic region, the rate of change in impedance and terminal voltage is greater than that in the linear region. The magnitude of current discharge causes varying rates of change to the terminal voltage and impedance. Experimental tests and results are presented to validate the new models.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:54 ,  Issue: 5 )

Date of Publication:

Oct. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.