By Topic

Analysis of the Double Laser Emission Occurring in 1.55-μm InAs–InP (113)B Quantum-Dot Lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)

In this paper, a theoretical model based on rate equations is used to investigate static and dynamic behaviors of InAs-InP (113)B quantum-dot (QD) lasers emitting at 1.55 mum. More particularly, it is shown that two modelling approaches are required to explain the origin of the double laser emission occurring in QD lasers grown on both, GaAs and InP substrates. Numerical results are compared to experimental ones by using either a cascade or a direct relaxation channel model. The comparison demonstrates that when a direct relaxation channel is taken into account, the numerical results match very well the experimental ones and lead to a qualitative understanding of InAs-InP (113)B QD lasers. Numerical calculations for the turn-on delay are also presented. A relaxation oscillation frequency as high as 10 GHz is predicted which is very promising for the realization of directly modulated QD lasers for high-speed transmissions.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:43 ,  Issue: 9 )