By Topic

Performance analysis of passive low-grazing-angle source localization in maritime environments using vector sensors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hurtado, M. ; Washington Univ. in St.Louis, St.Louis ; Nehorai, A.

We consider the problem of passive estimation of source direction-of-arrival (DOA) and range using polarization-sensitive sensor arrays, when the receiver array and signal source are near the sea surface. The scenario of interest is the case of low-grazing-angle (LGA) propagation in maritime environments. We present a general polarimetric signal model that takes into account the interference of the direct field with the field reflected from smooth and rough surfaces. Using the Cramer-Rao bound (CRB) and mean-square angular error (MSAE) bound, we analyze the performance of different array configurations, which include an electromagnetic vector sensor (EMVS), a distributed electromagnetic component array (DEMCA), and a distributed electric dipole array (DEDA). By computing these bounds, we show significant advantages in using the proposed diversely polarized arrays compared with the conventional scalar-sensor arrays.

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:43 ,  Issue: 2 )