By Topic

Recognizing 3-D objects using surface descriptions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
T. -J. Fan ; Inst. for Robotics & Intelligent Syst., Univ. of South California, Los Angeles, CA, USA ; G. Medioni ; R. Nevatia

The authors provide a complete method for describing and recognizing 3-D objects, using surface information. Their system takes as input dense range date and automatically produces a symbolic description of the objects in the scene in terms of their visible surface patches. This segmented representation may be viewed as a graph whose nodes capture information about the individual surface patches and whose links represent the relationships between them, such as occlusion and connectivity. On the basis of these relations, a graph for a given scene is decomposed into subgraphs corresponding to different objects. A model is represented by a set of such descriptions from multiple viewing angles, typically four to six. Models can therefore be acquired and represented automatically. Matching between the objects in a scene and the models is performed by three modules: the screener, in which the most likely candidate views for each object are found; the graph matcher, which compares the potential matching graphs and computes the 3-D transformation between them; and the analyzer, which takes a critical look at the results and proposes to split and merge object graphs

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:11 ,  Issue: 11 )