System Maintenance:
There may be intermittent impact on performance while updates are in progress. We apologize for the inconvenience.
By Topic

An Empirical Study on Large-Scale Content-Based Image Retrieval

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yuk Man Wong ; Chinese Univ. of Hong Kong, Shatin ; Hoi, S.C.H. ; Lyu, M.R.

One key challenge in content-based image retrieval (CBIR) is to develop a fast solution for indexing high-dimensional image contents, which is crucial to building large-scale CBIR systems. In this paper, we propose a scalable content-based image retrieval scheme using locality-sensitive hashing (LSH), and conduct extensive evaluations on a large image testbed of a half million images. To the best of our knowledge, there is less comprehensive study on large-scale CBIR evaluation with a half million images. Our empirical results show that our proposed solution is able to scale for hundreds of thousands of images, which is promising for building Web-scale CBIR systems.

Published in:

Multimedia and Expo, 2007 IEEE International Conference on

Date of Conference:

2-5 July 2007