By Topic

Estimating Human Age by Manifold Analysis of Face Pictures and Regression on Aging Features

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yun Fu ; Univ. of Illinois at Urbana-Champaign, Urbana ; Ye Xu ; Huang, T.S.

Extensive recent studies on human faces reveal significant potential applications of automatic age estimation via face image analysis. Due to the temporal features of age progression, aging face images display sequential pattern of low-dimensional distribution. Through manifold analysis of face pictures, we developed a novel age estimation framework. The manifold learning methods are applied to find a sufficient embedding space and model the low-dimensional manifold data with a multiple linear regression function. Experimental results on a large size age database demonstrate the effectiveness of the framework. To our best knowledge, this is the first work involving the manifold ways of age estimation.

Published in:

Multimedia and Expo, 2007 IEEE International Conference on

Date of Conference:

2-5 July 2007