By Topic

Content-Based Image Categorization and Retrieval using Neural Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yuhua Zhu ; Florida State Univ., Tallahassee ; Liu, X. ; Mio, W.

We propose a neural network based method for organizing images for content-based image retrieval. We use spectral histogram features, the histograms of filtered images to capture the spatial relationship among pixels as well as global appearance of images. We then find the optimal combination of spectral histogram features using optimal factor analysis to reduce the dimension of features and maximize the discrimination. The reduced features are then used as input to a multiple layer perceptron, which is trained to categorize images based on content using back propagation. For a query image, images are retrieved from different classes based on the categorization probability for the query image. Experimental results on a subset of Corel dataset demonstrate the effectiveness of the proposed method and comparisons show that the proposed method gives significant improvement over other methods.

Published in:

Multimedia and Expo, 2007 IEEE International Conference on

Date of Conference:

2-5 July 2007