By Topic

An Improved Discrete Particle Swarm Optimizer for Fast Vector Quantization Codebook Design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yu-Xuan Wang ; Nanjing Univ. of Posts & Telecommun., Nanjing ; Qiao-Liang Xiang

For tree-structured vector quantizers (TSVQ), the codebook quality highly depends on the splitting criterion and the approach by which a specific node is selected and then be partitioned into new ones. Among several proposed TSVQs, maximum descent (MD) algorithm can produce high quality code-books and reduce the computation time simultaneously. In this paper, under the basic structure of MD algorithm, we propose an improved discrete particle swarm optimizer with less computation cost and faster convergence rate than the conventional one, and then, based on which, a novel binary partitioning scheme for MD algorithm is presented. Experimental data show that the newly proposed algorithm can further improve the codebook quality while the computation time is almost equivalent to that of the MD algorithm.

Published in:

Multimedia and Expo, 2007 IEEE International Conference on

Date of Conference:

2-5 July 2007