By Topic

Image Splicing Detection using Camera Response Function Consistency and Automatic Segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yu-Feng Hsu ; Columbia Univ., New York ; Shih-Fu Chang

We propose a fully automatic spliced image detection method based on consistency checking of camera characteristics among different areas in an image. A test image is first segmented into distinct areas. One camera response function (CRF) is estimated from each area using geometric invariants from locally planar irradiance points (LPIPs). To classify a boundary segment between two areas as authentic or spliced, CRF cross fitting scores and area intensity features are computed and fed to SVM-based classifiers. Such segment-level scores are further fused to form the image-level decision. Tests on both the benchmark data set and an unseen high-quality spliced data set reach promising performance levels with 70% precision and 70% recall.

Published in:

Multimedia and Expo, 2007 IEEE International Conference on

Date of Conference:

2-5 July 2007