By Topic

Supervisory Control of Discrete-Event Systems with Output: Application to Hybrid Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

In this paper, the problem of supervisory control of discrete-event systems (DES) with output is presented and discussed at length. In such systems a causal output function is employed to assign each sequence of inputs with a corresponding sequence of outputs. When the specification of the desired behavior is given by a formal language over the output alphabet, necessary and sufficient conditions are derived for the existence of nonblocking input as well as nonblocking output supervisory control. The idea of sibling is introduced to solve the problem of nondeterminism in discrete-event abstractions of hybrid systems, giving rise to the development of a theory for nonblocking supervisory control of hybrid systems. Our results enable one to apply classical supervisory control theory to design supervisors for DES approximations of hybrid systems, and to import many interesting concepts from classical theory such as modular and hierarchical control.

Published in:

American Control Conference, 2007. ACC '07

Date of Conference:

9-13 July 2007