By Topic

Optimal Control of Spatially Distributed Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Motee, N. ; Univ. of Pennsylvania, Philadelphia ; Jadbabaie, A.

In this paper, we study the structural properties of optimal control of spatially distributed systems. Such systems consist of an infinite collection of possibly heterogeneous linear control systems that are spatially interconnected via certain distant dependent coupling functions over arbitrary graphs. The key idea of the paper is the introduction of a special class of operators called spatially decaying (SD) operators. We study the structural properties of infinite-horizon linear quadratic optimal controllers for such systems by analyzing the spatial structure of the solution to the corresponding operator Lyapunov and Riccati equations. We prove that the kernel of the optimal feedback of each subsystem decays in the spatial domain at a rate proportional to the inverse of the corresponding coupling function of the system.

Published in:

American Control Conference, 2007. ACC '07

Date of Conference:

9-13 July 2007