By Topic

Stochastic Analysis of Gene Regulatory Networks Using Moment Closure

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Abhyutdai Sinigh ; Cente for Control Engineering and Computation University of California, Sanita Barbara, CA 93101. abhi@engineering.ucsb.eud ; Joao Pedo Hespanha

Random fluctuations in gene regulatory networks are inevitable due to the probabilistic nature of chemical reactions and the small populations of proteins, mRNAs present inside cells. These fluctuations are usually reported in terms of the first and second order statistical moments of the protein populations. If the birth-death rates of the mRNAs or the proteins are nonlinear, then the dynamics of these moments generally do not form a closed system of differential equations, in the sense that their time-derivatives depends on moments of order higher than two. Recent work has developed techniques to obtain the two lowest-order moments by closing their dynamics, which involves approximating the higher order moments as nonlinear functions of the two lowest ones. This paper uses these moment closure techniques to quantify noise in several gene regulatory networks. In gene expression mechanisms in which a protein inhibits its own transcription, the resulting negative feedback reduces stochastic variations in the protein populations. Often the protein itself is not active and combines with itself to form an active multimer, which them inhibits the transcription. We demonstrate that this more sophisticated form of negative feedback (using multimerization) is more effective in suppressing noise. We also consider a two-gene cascade activation network in which the protein expressed by one gene activates another gene to express a second protein. Analysis shows that the stochastic fluctuations in the population of the activated protein increases with the degree of multimerization in the activating protein.

Published in:

2007 American Control Conference

Date of Conference:

9-13 July 2007