By Topic

Robust absolute stability and stabilization based on homogeneous polynomially parameter-dependent Lur'e functions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Montagner, V.F. ; Fed. Univ. of Santa Maria, Santa Maria ; Oliveira, R.C.L.F. ; Calliero, T.R. ; Borges, R.A.
more authors

This paper provides finite dimensional convex conditions to construct homogeneous polynomially parameter- dependent Lur'e functions which ensure the stability of nonlinear systems with state-dependent nonlinearities lying in general sectors and which are affected by uncertain parameters belonging to the unit simplex. The proposed conditions are written as linear matrix inequalities parameterized in terms of the degree g of the parameter-dependent solution and in terms of the relaxation level d of the inequality constraints, based on an extension of Polya's Theorem. As g and d increase, progressive less conservative solutions are obtained. The results in the paper include as special cases existing conditions for robust stability analysis and for absolute stability. A convex solution for control design is also provided. Numerical examples illustrate the efficiency of the proposed conditions.

Published in:

American Control Conference, 2007. ACC '07

Date of Conference:

9-13 July 2007