Cart (Loading....) | Create Account
Close category search window
 

Repetitive Learning Observer Based Actuator Fault Detection, Isolation, and Estimation with Application to a Satellite Attitude Control System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Qing Wu ; Simon Fraser Univ., Vancouver ; Saif, M.

An actuator fault isolation and estimation (FIE) scheme using a bank of repetitive learning observers (RLOs) for a class of discrete-time nonlinear systems is investigated in this paper. The parameters of these observers are repetitively updated using a proportional-derivative type learning algorithm at each sampling time. Based on the proposed RLOs, a group of diagnostic residuals are generated correspondingly. An actuator fault is located when only one residual goes to zero while the others do not. The parameter of the observer that locates the fault specifies the fault. Theoretically, sufficient conditions for the proposed fault detection, isolation and estimation scheme are derived. Practically, the proposed FIE scheme is applied to a satellite attitude control system, and the simulation results demonstrate its effectiveness.

Published in:

American Control Conference, 2007. ACC '07

Date of Conference:

9-13 July 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.