By Topic

Code-Aided Turbo Synchronization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Herzet, C. ; Univ. Catholique de Louvain, Louvain-la-Neuve ; Noels, N. ; Lottici, V. ; Wymeersch, H.
more authors

The introduction of turbo and low-density parity-check (LDPC) codes with iterative decoding that almost attain Shannon capacity challenges the synchronization subsystems of a data modem. Fast and accurate signal synchronization has to be performed at a much lower value of signal-to-noise ratio (SNR) than in previous less efficiently coded systems. The solution to this issue is developing specific synchronization techniques that take advantage of the presence of the channel code and of the iterative nature of decoding: the so-called turbo-synchronization algorithms. The aim of this paper within this special issue devoted to the turbo principle is twofold: on the one hand, it shows how the many turbo-synchronization algorithms that have already appeared in the literature can be cast into a simple and rigorous theoretical framework. On the other hand, it shows the application of such techniques in a few simple cases, and evaluates improvement that can be obtained from them, especially in the low-SNR regime.

Published in:

Proceedings of the IEEE  (Volume:95 ,  Issue: 6 )